翻訳と辞書
Words near each other
・ Mean annual increment
・ Mean anomaly
・ Mean arterial pressure
・ Mean Business
・ Mean Business on North Ganson Street
・ Mean center of the United States population
・ Mean Cheay
・ Mean Chey District
・ Mean corpuscular hemoglobin
・ Mean corpuscular hemoglobin concentration
・ Mean corpuscular volume
・ Mean Creek
・ Mean Creek (band)
・ Mean curvature
・ Mean curvature flow
Mean dependence
・ Mean deviation
・ Mean Deviation (book)
・ Mean difference
・ Mean dimension
・ Mean Directional Accuracy (MDA)
・ Mean Dog Blues
・ Mean down time
・ Mean effective pressure
・ Mean Everything to Nothing
・ Mean field annealing
・ Mean field game theory
・ Mean field particle methods
・ Mean field theory
・ Mean flow


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Mean dependence : ウィキペディア英語版
Mean dependence

In probability theory, a random variable ''Y'' is said to be mean independent of random variable ''X'' if and only if E(''Y''|''X'') = E(''Y'') for all ''x'' such that ''ƒ''1(''x'') is not equal to zero. ''Y'' is said to be mean dependent if ''E''(''Y''|''X'') ≠ ''μ''(''y'') for some ''x'' such that ''ƒ''1(''x'') is not equal to zero.
According to and , Stochastic independence implies mean independence, but the converse is not necessarily true.
Moreover, mean independence implies uncorrelation while the converse is not necessarily true.
The concept of mean independence is often used in econometrics to have a middle ground between the strong assumption of independent variables X_1 \perp{} X_2 and the weak assumption of uncorrelated variables \text{Cov}(X_1,X_2)=0 of a pair of random variables X_1 and X_2.
If ''X'', ''Y'' are two different random variables such that ''X'' is mean independent of ''Y'' and ''Z=f(X)'', which means that ''Z'' is a function only of ''X'', then ''Y'' and ''Z'' are mean independent.
==References==

*
*
Category:Statistical terminology

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Mean dependence」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.